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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1437

ON POSSIBLE SIMILARITY SOLUTIONS FOR THREE-DIMENSIONAL
INCOMPRESSIBLE IAMTNAR BOUNDARY-IAYER FLOWS OVER
DEVELOPABLE SURFACES AND WITH PROPORTIONAL
MATNSTREAM VELOCTTY COMPONENTS'

By Arthur G. Hansen

SUMMARY

This report presents an analysis of possible similarity solutions of
the three-dimensional, laminsr, incompressible, boundary-layer equations
referred to orthogonal, curvilinear coordinate systems.

Requirements for the existence of similarity solutions are obtained
for the following two cases: flow over developable surfaces; flow over
nondevelopable surfeaces with proportional mainstreem velocity components.
The anslysis obtains permissible forms of mainstream velocity components,
the square of differential of arc length on the surface, and the simi-
larity parameter. A hasic class of surfaces is found from which all other
permissible surfaces may be obtalined.

Necessary and suffieclent conditions are found for expressing the
ordinary differential equations resulting from the similarity transforma-
tion in uncoupled form. The analysjs shows that uncoupling is possible
only when the surface is developable and a surface coordinate system

characterized by (ds)? = (dxl)z + (dx2)2 is employed.

INTRODUCTION

Theoretical research on the important problem of three-dimensional
boundary~layer flow has been greatly restricted because of the complex

lThe information herein was originally presented as part of & thesis
entitled "Similarity Solutions of the Laminar Incompressible Three-
Dimensional Boundary-layer Equations"” submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy at the Case
Tnstitute of Technology, May 1958.
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nature of the governing equations. However, a degree of success has been
achieved in Iincompressible-~flow analysls by searching for exact solutions
of the equations for special types of mainstream flows. These exact so-
lutions of the three-dimensionsl, laminar, incompressible boundary-layer
equations have generally been formulated by use of "similarity" tech-
niqgues (e.g., refs. 1 to 7). In instances where the technique is appli-
cable, the partial differential equations of the boundary layer reduce
t0 a gystem of ordinary differential equations. The corresponding solu~-
tlions for the boundary-layer velocity components are such that the veloc-
1ty profiles differ by, at most, scale factors along coordinate directlions.
To date, similarity analyses have been carried out for only very
special types of mainstream flows and for special types of coordinate
systems. A question has always existed, therefore, as to the most gen-
eral class of problems amenable to a similarity analysis and as to what
limitations are inherent in its use. This question is successfully
answered for two-dimensional laminar flows in references 8 to 12, These
Investigations show that, in general, similarity solutions can only be
found for mainstream flows in which the velocity varies as a power of the
distance along a surface or &s an exponential. Reécently, several inves-
tigations have attempted to determine conditions under which similarity
solutions exist for laminar, incompressible, three-dimensional boundary-
layer flows (refs. 13 to 17). In investigations of this kind, the
type of coordinate system employed pleys an important role because of
similarity of veloeity profiles in coordinate directions. Consequently,
reference 13 considers the speclal case of a stationary rectangular co-
ordinate ‘system and determines what possible mainstream flows referred
to such a system lead to similarity solutions. Reference 14 determines
permissible mainstream flows referred to polar coordinates; reference
15 determines mainstresm flows confined to regions of small angle vari-
ation with respect to polar coordinate systems.

The research presented in reference 16 1s more general in scope than
that in reference 13 or 14. In reference 16 the coordinate system
assumed is an arbiltrary orthogonal, curvilinear system. In this respect,
the approach employed therein is simller to that which will be used in
the present report. However, the camplexity of the problem has required
the application of additionel assumptions, both in reference 16 and in
the analysis given here. In reference 16, Tor example, the mainstream
flow is agsumed to be irrotational. In the present analysis, two inde-
pendent assumptions (each different from that of ref. 18) are made and
lnvestigated seperately.

The .first assumption which 1s gpplied herein 1s that the surface
over which the flow takes place is developsble., Examples of such sur-
faces are cones, cylinders, and, of course, the plane. Such surfaces
are characterized by the geometric property of zero Gaussian curvature.
The second assumption pertains to & restriction on the form of the
boundary-layer velocity components when the flow takes place over a

. .

Ijﬂ‘.
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surface which may be nondevelopable. It will be shown that the assump-
tion is equivalent to specifying proportionslity of mainstream velocity
components in reference to a particular coordinste system embedded in
the flow surface.

The results of the present study are compared in detall with those
of reference 16 on page 40. However, it might be well to point out here
that there is a major distinction between the philosophy of reference 186
and the present treatment. Here, greater emphasis 1s given to the geo-
metric aspects of the problem. In reference 16, a great deal more atten-
tion 1s glven to establishing necessary and sufficlent conditions for the
existence of similarity solutions.

In the following sections, general requirements for similerity solu-
tions will first be derived. Then, further developments on the assump-
tion mentioned previously will be presented, and specific conditions will
be determined for reducing the boundary-~layer equations to ordinary dif-
ferential equations.

Acknowledgement 1s made to Dr. Gustav Kuerti of Cese Institute of
Technology for his interest and advice in the preparation of this work.

CONDITIONS FOR SIMIIARITY SOLUTIONS

Consider e surface in space in which an esrbitrary orthogonal coordi-
nate system (x;,xp) has been embedded. Let y* be a coordinate normal

to the surface {fig. 1). The boundary-layer equstions referred to such
8 system are the following (refs. 18 or 19):

' 2
.h—.l- ;‘ + ;g‘ :ul + A4 gul + ulqul - ugkz - 'a—-:—]:
19%x1 by oxp  f5O¥ dy
U, U, U, U
1 1 -2-"1 2
=5, 5%, © by ox, + ULV2N - Uzke (18)
u, 9 u, ou du d2
—;L-g-u-g+——2-62+ Vaz+ulu2k2-u]2_kl-._liz_
hy O0x; hpoxp vy Oy dy?
U U Us QU
Y1 %2 Uz 9Y2 2
hl 5_1 %, 5%, + U Ugky - Ugky (;b)

Ju du
ulkz’fuzkl*'h%ls—l = 2+l\,§l§=o (1c)
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where

Uy ,up,V ' boundary-leyer veloclity componéﬁts in the;gl-, Xo-, and y*-
directions, respectively - N

y /v ‘ R

kl,kz geodesic curvatures® of coordinate lines Xy = const. and
X] = const., respectively, ky = ko = ——=—
’ > L7 hyby = xg’ 2 T Bibp 3%

hy,hg metric tensor components related to the differentiél of arc
length on surface by (ds)? = h%(dxl)z + h%(dxz)z

U;,U02 inviscid main-flow velocity components in vicinity of surface

(A1l symbols are defined in appendix A.) The boundary conditions are:

At y=0,u =u=v=20

lim vy =U;  lim uy = Up
y—)u y—bo

Two possible situations might now be noted relative to the main-
stream velocity components. The first is when neither U; nor Up; is
identically zero. The second is when one of these components is iden-

tlcally zero, and, consequently, one of the coordinate lines corresponds
to & streamline of the main flow. For these two cases_(when neither o

nor Uy is identically zero) follow the classical approach for obtain-
ing similarity solutions, and assume that ul and uz are expressible
as follows:

B&=d_F.§l]l (2)

Y2 _ae(n) - 3

8The geodesic curvature at a roint P of a curve émbedded in a
surface in space is numerically equal to the curvature of the plane
curve obtained by projecting the surface curve onto the tangent plane

to the surface at P. . C T

' 1t
[Py

e

™
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where F(n) and G(n) are as yet undetermined functions of the similarity
varieble 1n defined as

3
n= %7= 8(xy,%p5) = yal(x),x;) (4)
v
and where g(x),xp) is an erbitrary function of x; and xp. (See ref,
13 for a detailed explanation on specification of the form of T7.)

For the case of one mainstream velocity component identically Zero,
it can be assumed without loss of gemerality (from symmetry considera-
tions) that Up =0 and u; and u, are expressible as

I_J.i. = _Sﬂ).dgn (8]
Uz 40
E = Qa%ﬂl (8)

where US is a function that will be determined in the analysis.

Transformed Equations for U; and Uy Not Identically Zero

From the continulty equation, equation (lc), and the definitions
for wu; and us, it is possible to obtain en expression for the

boundary-layer veloclty component v. Substituting equations (2)-and
(3) into equation (lc) end using equation (4) give

pr UG"

§x—+\/;§y-=0 (7)
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Solving equation (7) for ov/dy and integrating from 0 to y with

respect to y result in . .;' . "t_"
v = --—C[F<Ulk2 +-1—E’U3L J13un )
g By Sx; "By O% )
o
Flx %) ) (8)
where = - T -

£(xq,x5) = v(xy,x,0) +

5 1 Ulalng 15Uz U231

= = = =

At this point, it would be well to discuss restrictions on the func-
tions F(n) and G(n) resulting from the boundary conditions on uj,

up, and v. From equations (2), (3), and (8):

_ : L5 ue

(1) The boundary conditions u; = uzp =0 for y =0 imply

F'(0) =G'(0) =0

(2) The conditions 1im uj; = U; and lim up = Uy~ imply
yro Vo=

1im F'(n) =1 and 1im G'(g) = 1
n-')eo Tl-)oo

(3) The condition v =0 for y = 0 implies

19 Uiy

hy ox1 _ hi ox] +

e £ £(x),x5) = F(0) (Uyky + 5=

1 9V UzaJ_ng)

Gg(0) (Uzkl + = s 3% ~ Ty Oxp
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Now, it can be shown by a slight extension of an argument presented
in reference 13 that there is no loss of generelity if it is assumed
that F(0) = 0 and G(0) = 0, vhich in turn implies f(xl,xz) = O.

This result will be used in the following development.

Substitution of equations (2), (3), and (8) into equations (1a)
and (1b) yields, respectively,

Us 0 In U oU U
he’] 1 - 1 Uz Uz 3 1n g2
2
U U, U,d31InTU U3
Y2 w2 [L 1,2 1
7, k€ -<h &;_*‘hz—'a?;z—ﬂfzkl-ﬁ—kz)—o (9)
lBUz 12 lBUz Uz aln 2 "
hza’;;“' - hz'a;;;”zkl“z'ﬁ;—s;:f' Ge" - gZa'" +

U U 2
Y by (201 -1 9ln "
(hl T_xl + Ulkz) G'F (hl rxl Zhl X1 + Ulkz FG" -

2

U U;31n T U e

1 1 2 1 9% 1

3, le'z-( + 3 x2+Ulk2--ﬁ-é-kl =0 (10)

Equations (9) and (10) will be termed the nyprensformed equations,” and
the principal problem of concern herein will be to find the necessary
and sufficient conditions for reducing the transformed equations to &
system of ordinary differential equations. Before this step 1s under-
taken, however, the transformed equations will be determined for the
cese when one of the mainstream veloclty components is jdentically zero.
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Trensformed Equations for One Mainstream.?élocity
Component Identically Zero _

Now consider the cage Uso = 0 and define uy and. us by equa-

tions (5) and (). Again, the boundary-layer velocity component v
can be obtained. The form for v will be identical to that glven in
equation (8), with U, replaced by U%.

Substitution of the expressions for wu,y, U, and v into equa-
tions (la) and (1b), respectively, then gives T

U U U 2 N
L 1 2 _ (1 71 ___l__aln " _ Ll
(U3 1n U U¥ U 2
2 1 1% U2 ding *
(E"T’“U;kl O b T ey VR oFT -
2 2 2 OxXp 2 2
3
Ezf_ kG - = 3—3U1 =0 (11)
2 B
i aUz G'Z - _l._ at]‘g + ng - [fé a ]-n 2 GG‘" - ngl“ +
hz XZ hz &E 1 th .Xz )
U; d 1n U¥ dU, U 2 -
_]; 2 R _ _J_._ 1 - 1 d In g "o
vl vi i
o K F'2 - o Ky =0 (12)

Equations (11) and (12) are of exactly the same form as equations

(9) and (10) except Ffor the absence of several terms which are not coef-
Ticients of terms involving F, G, or their derivatives. Thig fact will

be important in determining the generel conditions necessary for reduc-
ing the ‘transformed equations to ordinary differentisl equations.,
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It should be stated that the boundary conditions for G'(n) for
- this case are given by

G'(0) =0
2 1im G'(n) = O
S N>
The boundary conditions on F'(n) are the same as for the previous case.
Necessatry Conditions for Obtaining Similarity Solutions
g It is obvious that equations (9) and (10) or equations (11) and

(12) beccme ordinary differential equations if the coefficients that
depend on X; and xp are proportional. This assumption wlll now be

introduced (hereafter called assumption A). The assumption of propor-
tionality is a sufficient condition for the solution of the system of
equations to depend only on 7. Whether this 1s a necessary condition
will be discussed on page 40. At present, proportionality of the coeffi-
clent is assumed simply as an additional hypothesis under which to solve
- the systems. First, examine the implications of this assumption rela-
tive to equations (9) and (10). As the function g2 serves as a coef-
ficient in both equations, the generasl requirements are as follows:

19Uy 1901 Uy 3 1p g2
g = 1 hy 32_ Gﬁiaxl - 2h;  Oxy + Ulkz)

Up d 1n Uy dU U

= 1 9Uz 2 O ln g2

az + Usk, | = - g
<h2 ox32 2 %) g <;2 oxz ~ Zhy  oxg T Ugky

&
(N ) I

Uy Uz d 1nUj u3 1
= hls_ hz—s-——+Uzkl—-—k2 =a7-h—-

2
= a Ul ° e + Uqks ] = & e k
8 2 le 152) = €9 UZ 1

Up31nU; ;5 A uZ
= 210 hl"‘g—"""‘ 5‘—+U1k2-"£k1 (13)



w0 B NACA TM 1437 .. = -

Now, the following observations are made. First of all, gz cannot
be identically zero (see eq. (4)). Therefore, if the individual terms =

2 2
= — + Uck,, and =— k., are each proportional to g* (or

1 OU; UgdlnUy 5
identically zero), the term WS tTE og Ugky = T, ko) will be

proportional to g? (or identically zero). Similarly, if

U, O n U, 1 9U, Ui 2
EE.—-SEI—— + Uqiks |, EE EEE’ and ﬁ; ky are each proportional to g

Uy d31nUy ; dUyp uZ
(or identically zero), the term B S +-EE'§EI + Uyky - v, kq

- .816%

will be proportional to gz (or identically zero). The conditions im- .. -
posed by equation (13) therefore reduce to the requirement that nine co- '
efficients be proportional. Furthermore, varlious terms in certain of R
these coefficients can be delet%d wvhen these terms are required to be )
individually proportional to g~. This leaves the following list of nine
terms that must be mutually proportional (or identically zero) if simi-
larity solutions of equations (9) and (10) are to be obtained:

) | .

gl
o/
2

@

(14)

@ @@ @©@ ® ® ® O
5
w
515
Y

©)
o5
o
|
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Proportionality among the preceding terms is equivalent to specifying a
system of partial differential equations, Solutions of the equations
determine mainstream velocity components U; and U, and the components

h; and hy; of the metric tensor assoclated with the orthogonal coordi-

nete system. As solutions of these equations will result in equations
(9) and (10) being reduced to ordinery differentisl equations, a stated
proportionality between any two terms will be called "an ordinary differ-
ential equation condition" and will be abbreviated 'o.d.e. condition.”

If o.d.e. conditions are set up for equations (11) and (12), it
will follow that these conditions wlll be exactly the same as those given
for equations (9) and (10), except for the replacement of Uz by US.

Hence, solutions for various functions in one case will correspond ex-~
actly to those in the other case. In setbing up the equations for the
o.d.e. conditions, Uz is therefore used to denote either Us; or U2.

A general analysis would now involve finding solutions of the sys-
tem of equations derived from set (14) without further restricting
assumptions on the nature of the unknown quantities. As mentioned in
the INTRODUCTION, this most general problem has not as yet been analyzed
because of inherent complexity. Consequently, the problem will first be
attacked under the assumption that the flow surface is developable.

This is equivalent to specifying that the Gaussian curvature K of sur-
face is identically zero. In turn, this assumption leads to an addi-
tional equation involving hl and. hz.

Following the analysis for developable surfaces, the problem will
be solved under the assumption that Ul/Uz is constent with no restric-

tion on surface geometry. It will be shown later that a consequence of
this assumption (for Us. EI&Q is that streamlines of the main-flow cross

coordinates lines at a constant angle.

The requlrements for similarity solutions will be derived according
to the Tollowing topical scheme, (No attempt will be made here to solve
the corresponding ordinary differential equations that result.)

(1) HBypothesis: K = 0 (pp. 12-24)

(a) k:f + kg # 0

(b)kl=0,k2=0
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(2) Hypothesis: Uy = cUz (pp. 25-38)

(a) kk, £ 0

1. k; and kp, nonconstant - -
2. kl and ky; constant

-—

(k1k; # O and only onechoice of k; constant will
be shown to be impossible)

ANALYSTS OF POSSIBLE SIMILARITY SOLUTIONS FOﬁ?FIOW OVER

SURFACES ISOMETRIC WITH THE EUCLIDEAN PLANE

In the following sections it is assumed that the flow takes place
over a developable surface (i.e., a surface isametric with the Euclidean
plane}. Relative to this assumption, sclutions for hy, hp, k3, kp, Ul,

Uz, and g2 will be obtained from the 0.d.e. conditioms. Before this

can be carried out, however, certaln relations are needed from the in-
trinsic geometry of surfaces. These relations will now be developed.

Coordinate Curvature Relations for a Surfaee of
Zero Gaussian Curvature

Two surfaces are sald to be isometric if it is posgible to find a
coordinate system embedded in one surface which has the same surface
metric tensor components as a coordinate system embedded in the other
surface, Furthermore, if two surfaces are lsometric, ab invariant ex-
ists called the "total" or "Gaussian" curvature, which will be the same
for both surfaces. Ior a system of orthogonal coordinates it can be
shown that the expression for the Gaussian curvature is_

X - 1 [a (1 on3 3 ( 1 ahl) (15)
=T Zhlhz 3:::—]_' hlhz Exl EXZ hlhz sz

(8ee ref. 20, p. 169.)

Substituting the expressions for coordinate geodesic curvature into
equation (15) gives

3k dk 2
K=(-Hl]—_5;c-?- rf:gg—l)-(kl+kg) (16)

0 ) ' -
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Now employ a theorem from the geometry of surfaces which states that a
necessary and sufficient condition that a surface be isometric with the
Euclidean plane is that the Gaussiasn curvature be zero (ref. 20, p. 168).
Hence, for the case under consideration, from equation (18) »

2 .2 1 %kp 1 akl)

kM tk = -\ Y5 17)
With this condltion relating the coordinste curvatures and metric tensor
components, and with the o.d.e. conditions referred to in the previous
section, it 1s possible to determine the permissible coordinate systems
and mainstream flows leading to similarity solutions of the boundary-

layer equations. Equation (1.7) clearly shows that k; and kp cannot
be nonzero constants.

In general, it will be necessary to make certain initial assump-
tlons regarding the numbered terms appearing in set (14) before' a unique
set of o.d.e. conditions can be considered for enalysis. This follows
from the fact that an equation expressing proportionality between two
terms can only make sense if the terms are not identically zero. Con-
sid;ra.tion is first given to coordinate systems in which ky # 0 and
ko = O.

Reduction of 0.D.E. Conditions for kj g O, ky £ O

Under the assumption that k, # 0 and k, é 0, the terms numbered

@, @, and @ in set (14) cannot be identically zero. Hence, the
following o.d.e. conditions prevail:

z
ko = a;8 a) 7 0 (18)

N

k= a8 a, £0 (19)

-
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Differentiating equation (18) with respect to X glves

3k, Up 32 g2 OU U167 T,
= L og & 1 U 2
3 "% (ﬁ% x] " TZ 3% ‘ T3 °ox

il
[
™
G”
n
1]
-
/_\
o4
>
—
£
[
!
[av]
%]
i
SL67

(20)

I
w
n
/"'Oj\
B
xR
o
o/
B
(e}
’_l
Q/
B
5
N

Similarly, by differentiating equation (19) with respect to xp 1t
follows that

dk; dingl 01T 3 In Uy g
- g 2 1
5 kl( S T T, - YT ) (21)

It will now be shown that the right sides of equations (20) and
(21) can be simplified in form. Following the simplification, equa-
tions (20) and (21) will be substituted into equation (17), and a rela-
tion between U; and Uz will be established. - e T

The assumed proportionality between the coefficients listed in set
(14) leads to the following set of statements: ) -

(1) From the o.d.e. condition for (@) and @,
.
2 azg
Tﬁ—a in = kz + —"‘—3 - |2h

0 1n Up _ -
(2) Either 'T—" 0, or from the o.d.e. condition for Q@

and @,

% |
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(3) From the o.d.e. condition for @ and @),

- —T——— ko +-—U—l— 2hy

(4) From the o.d.e. condition for (@ and @),

2
d 1n g2 g8
——3——§L = |k + 2h
1
*2 Uz 2
d 1n U
(5) Either ——g-—-- = 0, or, as an o.d.e. condition for (@)
and (@,
3 1n U,3 g%ho
8}(9 &7 f]'
2

(6) Fram the o.d.e. condition for () and @),

31nU a g2
-2 Lok, +—2]on
B 2

2

From these observations it follows that equations (20) and (21) must
be expressible as follows:

ok &
= 2K hp |nky + ag o7 (22)
-9l 2

where
n=0, 1, or 2

m=0, 1, or 2

15
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As a consequence of the hypothesis ky # 0, ko ,é 0, at least one of the

quantities n, m, ag, or -alO must be nonZero. Now, by using equations
(22), (23), (18), and (19), equation (17) cen be rewritten as-

: Uz
k2 (1 + 2m 10 2 (1 s en o+ atay 2] - (24)
1 + +a.loa2_U72—+ ) +n+a.la9-aé-—0
2

An o.d.e. condition between (B) and (@ 1is

...2 2 - -
E@. ko = 8 E—jl k

Uz\3 ky ) (
. = : 25)
e e = a e _

(Ul) 11 o

Substituting equation (25) into equation (24) results in

lam=0 (26)

H3(1+2m+a. a, Hl)+l+2n+al g

1072
ll

where . ._. -
()
H= T
1

From equation (26) and the definition of H, it follows that H must be
a8 positive constant. Therefore, the following lemma is established.

Lemms 1. - Given an orthogonal coordinate system in which neither
ky mnor kp is identically zero, a necessary condition for equations

(9) and (10) or equations (11) and (12) to possess similarity solutions
under assumption A is that

U; = cqU; (c; & constant)

where Up = Uy when considering equations (9) end (lO) and Up = Uz
when considering equations (11) and (12).

Furthermore, from lemms 1 and equation (25) there follows lemma 2,
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Lemms, 2. - Given an orthogonal coordinate system in which neither
k1 nor kz is identically zero, & necessary condition for equations
(9) and (10) and equations (11) and (12) to possess similarity solutions
under assumptlon A is that

ky = cgks (c; & constant)

With the establishment of lemmas 1 and 2, it now becomes possible
to determine explicit forms for the coordinate-line curvature k; and
ks &and the functions h, and hy through solutions of o.d.e. conditions

from set (14). The details of the analysis are presented in appendix B.
The results cbtained can be summarized in the following theorem.

Theorem l. - Glven an orthogonal, curvilinear coordinate system em-
bedded in a surface of zero Gaussian curvature and in which neither k;

nor ks is identically zero and neither U; nor ﬁz is identically

zero. Then, necessary and sufficient conditions for equations (Sy'and
(10) or equations (11) and (12) to be reduced to ordinary differential
equations under a similarity transformation and assumption A are that

(1) By = ap}(x;)ay(x,) (e #0) 2ilx)) #0
hz = bpl(xl)Clé(xz) (b # 0) Qé(xz) #‘ 0
_ 1
(@) % = e
Ko = 1
2 apl(xl)QZ(Xz)
(3) & = P M)l H(xp) €y £ 0O
(4) Uy = Cp7 (%) dp(x,) G, #0
.ﬁz = Csp?_(xl)qlg(xz) 03 % 0

Equations (9) and (10) become, respectively,

2 - " - 1 - 1" - 2 - - =
(5) AF AFF AF" + A G'F' - AGF A (Al + A, As) =0
B.G'2 -~ A_GG" - A.G'" + B,G'F' - AFG" - B.F'2 . (B, +B, +B,) =0
1 S 3 2 oFG 3 1T P2 T P35
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-

where ;
2
Con C
A, =228 g = B
a Cza
(n + 3)Cp Cam
bo == — P =
Cz(n + 1)
‘A3=Cl Bz-‘-'- 2
g E
3
A4=—€-(m+l) Bz = ——

Ag = = (m + 3)

Equetions (11) and (12) reduce to, respectively, the same forms as those
given in (5), except that the first equation has only Ag as a constant
term and the second has only Bz as a constant term,

Coordinate Systems for Which k; # 0, kp # O

The following two questions are now posed:

(1) Is there a unique coordinate system corresponding to the metric
components h; and by defined by condition (l) of Theorem 1 ?

(2) What is the nature of coordinate systems defined by these
equations ? '

The approach to the previous questions can be siﬁplified somewhat
by carrying out the following transformation of coordinates. Let

X = pylxg)

(27)

=

Xo = Q2(Xz)

The square of the differentisal of arc length in the (}gl,xz) system is
then given by

(ds)? = afx2(ax;)? + bzxi(axz')z ] (20)

oyt

NACA TM 1437

‘l

I

qL6% !



4975

CZ-3 back

NACA T 1437 19

The coordinate lines X; = constant will coincide with x; = constant,
and the lines X5 = constant will coincide with x5 = constant. The
metric components are given by

%
hl=8.X2

(29)

3#*
hy = bX;

The principal difference between the (X;,X,) system and the (xj,xp)
system will be in the measurement of length along the coordinate lines.

A transformation of the previous type will hereafter be called a “change
of scale" transformation.

The surface in which ocur coordinate system is embedded is assumed
to be isometric with the Buclidean plsne. Hence, the question of whether
or not & unique coordinate system exists with metric components defined
by equations (29) is equivalent to asking whether or not & unique trans-
formation of variables exists of the form

Yy

¥4 (X1,X2)

Tz = Yp(¥X3,%p)

(30)

where Y; and Y, are Cartesian coordinates; that is,
(a)? = (ax)? + (ax,)?

This question is discussed in reference 20. It is shown in this refer-
ence that a necessary and sufficient condition for a suitsble transfor-
mation of the form (30) to exist is that the Riemann-Christoffel tensor

formed from the ﬁi be a zero tensor. For a surface having zero

Gaussian curvature, this condition is satisfied. Furthermore, the
transformation will define a unique rectangular coordinate system ex-
cept for possible translations and rotations.

The second question on the nature of the coordinate system requires
a more detalled investigation, which is presented in appendix C. It is
shown there that the coordinate lines become logarithmic spirals when
referred to the Euclidean plane as & developable surface. If p and 8
denote polar coordinates, the equations for the coordinate lines
X; = X§ = constant and X; = X3 = constent are given, respectively, by

c(x9) a%g-0a (cs)

2
1/a ee/a (co)

D
l

= o(x9)
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where : - L
2 aZpl .
¢ =Tz .2 :
a“ + b - -
af = % _
b - _

A typical network of such coordinate lines is shown iﬁ figure 2.

Permissible main-flow streamline shapes in spirél coordinate system

(k1 # O, kp # 0)s - The equations for main-flow streamlines in the
(x1,x5) coordinate system or equivalently in the (X1,X;) system are so-
lutions of the equation

.3
Up 1y d&x; by &X; aXp dXy

o= = = = (31)
Uz hp &z % ax, DbXp Hp
From lemma 1, U;/0, = c;. Hence, - .
aXs dX -
2 1
—_— ——— = 32)
1 (
B, X, . 2
Equation (32) has the solution -
X = (const.) X3 o (3?)
where -
e,b
1
r=--3%0
a # : ..

This, then, is the defining equation for the permissible main-flow streem-
lines in the (Xj,Xs) coordinate system. Once again, a more familiar form

for equation (33) can be obtained by expressing the equation in terms of
(p,8) coordinates. The transformation between the (p,8) and (X;,X5) co-

ordinate systems is given in sppendix C by the equations

p = cXiX2

In Xz (c5)

§=aln X -~ —3

gL6%

l
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Substituting equation (33) into (CS) gives

p = poX§+l (pp & constant)
(34)
o = (dr - %) In X, + 65 (6y & constant)
If X, is eliminated from equations (34),
£ (6-60) (35)

Po
where

m=.‘g£_+_}l (aBr # 1)

dzr ~ L

If m# 0, equation (35) is the equation for families of logarithmic
spirals in a planar polar coordinate system. If m = O, there are
circles in such a system. Finally, if dfr = 1, equation (34) gives

@ = constant, that is, radial lines in & planar polar coordinate system.

Transformation of coordinates to & basic system. - Before leaving

the analysis of this system, both the form for (ds)? and the equation
of the main-flow streamlines will be put in a particular form for later
reference. First, a scale transformation 1s introduced:

X
e l/a

Xl=

Xa/b
X, =€

)

[(&)? + (7] (36)

Equation (28) then becomes

A
o], b
+
5

(as)? = e

The equation for Uy = céﬁz becomes

(37)
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In the (iﬁ,ié) coordinate system the equation of the main-flow stream-

lines assumes a particularly simple form. As the metric tensor compo-
nents are identical, the governing differential equation is

X, U -
,_E = ﬁz = const. _
aX; Vi - )

Hence, the streamline equation is
a'X] +b'Xz +c' =0

It is of interest to note that the streamlines in the various co-
ordinate systems previously employed cross the coordinate lines at con-
stant angles. This follows from an examinstion of the formula for the
cosine of the angle €& between a streamline and a coordinate line. For
flows in which the mainstream velocity component Us # 0 and U; = c Uy,

(ny dxl)/(hz dxp) = ¢; on a streamline in a coordinate system (x;,x5).
The cosine of the angle between the streamline and an” X7 coordinate
line is then (ref. 20, p. 150)

cos 6 = hz ' | o4 = £
1Ty &) C (n; axg)(1 + o) 1+ cZ

S 8 = constant

A similar result holds for the angle between the streamline and an xz-
coordinate line.

Reduction of 0.D.E. Conditions When One Coordinate
Curvature is Identically Zero

Now solutions of the o.d.e. conditions are considered when the
curvature of one set of coordinate lines vanishes while the other cur-
vature does rot ldentically vanish. Initially, it is assumed that
k] =0 and kp #0. The case kp =0, k; # 0 will follow directly

from symmetry considergtions.

The analysis based on the o.d.e. conditions and K = O leads
directly .to the following theorem, which is proved in appendlx D for
k] =0, kp #0.

Theorem 2. - Let (xl,xz) be a curvilinear orthogonal coordinate
system embedded in a surface of zero Gaussian curvature and in which

S16%
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ks, is zero and k; is not identically zero. Then, a necessary condi-~
tion for equations (9) and (10) and equations (11) and (12) to possess

b4
similarity solutions under agsumption A is that hl=P( l) and
q'(XZ) Q(xg)
h, = - -—2—(——— where p(x;) and q' (xp) are not ildentically zero.
qa-{X2

(Indices may also be interchanged uniformally in the previous statements.)

The form of k; and ky indlcates that the coordinate system
(xl,xz) ig & modified polar coordinate gsystem when referred to & plane.
Thet is, the system (xl,xz) differs from the usual polar coordinate sys-
tem only in scale variations.

The analysis of similarity solutions for polar-type coordinate sys-

tems is completely documented in reference 14. The coordinate system of
this reference can be defined by by = Xp and ho = l. The analysis

presented in reference 14 shows that only one form for Ul = cz_ﬁz is
possible. This form is

= o RTX]
Ul—a.xze

This case is investigated further by introducing a scale change
transformation

X2
X, = Xy, Xp = ¢©
The equation for (dsss)2 on the surface then becomes
(as)? = xB(ax)® + (ax,)” = ezxg[(dxl)z + (ax)]

Finally, by an orthogonal transformation,

X; = sin @ El - cos @ -iz (o a constant)

Xy = cos ons-(l + s:I.nc:r,i2
The equation for (ds)z can be written

2(sinor,i
= e

)2 1

(a5 4+ cos a iz) [

(%)% + (a%,)?]
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R

This is basically the same expression as éﬁnation (56) The equation

for U, = coUs becomes B
1 2va

n'Xl_-i-_m_'X2

U, = (const.)e

1

which corresponds to equation (37). Therefore, the Following important
theorem can be stated. . --

Theorem 3. - The boundary-layer flow problems that can be solved
by employing the coordinate system and assoclated mainstream flows of
Theorem 1 are identical to those that can be solved by employing the
coordinate system and associgted mainstream flows of Theorem 2.

Reduction of 0.D.E. Conditions When Both
Coordinate Curvatures Vanish

The final case to be considered is kl's o andrikz = 0., The cd;;

ordinate lines will therefore be geodesgics of the surface. In thé-plane
such & system simply becomes a rectangular, Carteslan coordinate system.
This particular problem 1s discussed in reference 13 and, hence, details
will be omitted. The results of this analysis with hy = =1 give
the following principal forms for U;, Us, and gz (npte. Uz here

corresponds to an actual velocity compaonent):

nx _
(1) Uy = ae ;x%_l gz = const. Uy
i _
Uz = be lx%l
3}
R T T CEU
UZ = bxﬁl_'lx%l -
. .
(3) UL = axT gz = const. —=
n 1
Up = bxy
(4) Uy = ge L g% = const. ﬁi
mx
U, = be 1

' GLBY

| l
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ANATYSTS OF POSSIBLE SIMITARITY SOLUTIONS

FOR Ul/UB = CONSTANT

Throughout the previous main section it has been assumed that the
Gaussian curvature of the surface X was identically zero. _As & con-
sequence of this definition, it was determined that Uj = ¢;Us in every

case where one of the coordinate curvatures was nonzero. In the present

section it will be assumed at the outset that Ul = cle, and no assump-

tions regarding the nature of K wlll be made.

Reduction of 0.D.E. Conditions for ki ¥ 0, ky ¥ O

If it is assumed that k, #£ 0 and X, # 0 under the basic assump-
tion that U; = ciﬁz, the o.d.e. condition for C) and C) yields

kl = Czkz

Two possibilities now exist. One possibility is that k; and ky
are constant. (This was not allowed in the previous analysis except
for ky = kg = O.) The other possibility is that ky and kp are non-
constant. If k; and ky are assumed nonconstant, the analysis from
the beginning of appendix B to equation (B1l3) will apply since the
analysis used only o.d.e. conditions and the results of lemmas 1 and 2.

No recourse was made to K = O 1in that section. Hence, by substituting
the expressions from equations (Bl), (B4), and (Bl3) into equation (16),

. the following expression for . K 1s obtained:

_ 2 2 1
K = - (kI + k3) (1 + _dl)
oxr
K = kz( 2 ) +
= =Ko Cz + 1)1 + dl (38)

On the other hand, if kj = cgks = const., there results from equation
(18):

X = -kg(cg + 1) (39)
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Permissible forms for hj, hp, k;, kp, and Up. - In attempting to

determine permissible forms, we will initlally distinguish between the
case where kj; and kp "are nonconstent and the case where both are

constant. First consider the nonconstant case.

From equations (B7) and (Bl3), the following relation occurs be-
tween by and hgp:

,(x) dz/e2
P2 = BT TRT

This equation can be rewritten as

hg = hlflo (Xl) fll(xz) _ (4:0)

As k; = ck,, equation (B10) is valid: -
oh oh ' :

= = <z = ; (B10)

Substitution of equation (40) into (B1O) then gives
ok oh '
1 1 ,
Sx, = cefiilxg){f10(x1) 357 + Bafio(xa)

whick in turn can be written as

0 1n hy O In by
% - cafulxa)fiolx) oy cof11(xp)fio(x)  (41)

Equation (41) is a first-order linear partial differeﬁtial equation
that can be solved by classical methods. In particular, if the method
of lagrange 1is applied, a generzl solution for hl is

u
by = clofiz(xl)ew( ) (42)
where @(u) is an arbitrary function of - -

u = flz(xl) T czfls(xz) + const.

j

SLEe¥
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The functions f£qp(x;) and f£y3(xp) are related to fio(x;) and £q7(xp)
by

raolm) T # ©
£11(xp) = £iz(xp) # 0

The corresponding expression for hz can be determined from equations
(40) and (42) and is given by

Bz = c10f is(xz)eq)(a) (43)

From equations (42) and (43) the following expressions for k; and ko
can be obtained:

2 -@
ki = —— ¢le
1" epp
(44)
l -
ky == g¢'e ®
10

If k3 and kp are now considered constant,

d 1In hy

Hence,

3% 1n ny dhs

=k = h-hok 1k

Exl sz 1 X7 172152

Similarly,
32 1n hy

Therefore,

3% Inhy, d% Inny
Ox; OX, ~ Oxj OXp
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or h.
2% 1n 2
1

3% oxp 0 : =

The solution to the previous equation leads directly to an equation of
the form of equation (40), and the analysils that follows is applicable.
However, with constent Xk; and kp, the solutions of equations (44)
can be written at once as : .

@ = 1n (4 - const. + const.)-l

By means of the o.d.e. conditions it is now possible to determine
all poesible forms of the function ¢ and the remailning unknowns. Be-
fore the conditions are applied, however, the numbered coefficients in
set (14) willl be replaced by an equivalent set obtained from the original

U

= 2 =
list after substituting Uy = ¢;Up, kg = epkp, and g“ = (const.) %, ky,
following from () eand (9, into the various terms. This new set is

the following: . — ™

d1InT

C>* 1 2 T

« 1 O 1n (n5/Tpkp)
C) EI Bxl

C)* 1 O 1n Ushy
hz SX2

2 .
hz axz .

/

5

2
[4V]

1
M.
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Proportionality between any two of these expressions will comstitute
an o.d.e. condition.

As in the past, it will be necessary to make certain assumptions
regarding the nature of Uz before a unique set of o.d.e. conditions
can be obtained. Four cases are again distinguished. (Note:

Ul = Cle) .

(1) Case A: TUs = const.

Uy
(2) Case B: &I#—o;-&g-:-o

30, 3T,
(3) Case C: ") = 0; =, £0
RJij 3U

(4) Case D: ﬁ#o;ség’o

The analysis of these four cases is presented in appendix E. The re-~
sults can be summarized in the following theorem.

Theorem 4. - Let (xl,xz) be an orthogonal curvilinear coordinate
system for which k; ¥ O and ko ¥ O. Further, assume that
U, = (const,)Up. Then, necessary and sufficient conditions for equa-

tions (9) and (10) and equations (11) and (12) to be reduced to ordi-
nary differential equations under assumption A and the given similarity
transformation are that

e 2’ (x;) o0(1)

(1) by

hy = c,q! (xz)eq)({;)

where u = p(xy) + cpa(xy) + cz. (The symbols ¢y, cg, and cz are
not to be confused with previous cases where these constants were
employed. )

(2) The following sets of conditions hold for Uz and @:

constent: @

(a) T 1n(ad +b)" or @ =af +b

esp(xl) :

r =au+Db

(®) Ty
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_ SQ(Xz) ~
(e} Uz = re $: ® =au +b

(@) T, =re®® 9o=a3+b or ¢ = In(au + b)®
2

_ sp(x7 ) +tq(xy) .
(e) Uy = re ' : ¢ =au+b

(3) gz = (const.)ﬁzkl

wvhere s and t are constants.

At this point, it is of interest to determine the cases that are
distinct from those referred to in Theorem 1. At the outset » hote that

in all cases where ¢ = al + b the equations for h; and hs can be
written as L ol

ap(xl)éaczq(xz)

by = (const.)p' (x;)e

u

(const.) ea.cgq_(xz) Ei— [;ap(xl)]

ap(x1) acpa(xy)
ho = (const.)q'(xz)e g 2hz

a .
= (const.)eap(xl) —d;[e czq_(xz)]
dx
. ap(x;) acaq(xy)
By denoting e 1 by P(x;) and e e by Q(x5), the previous

expressions can be written as

h

(const.)P'(xl)Q(xz)

(const.)}Q! (xz)P(xl)

1

h

2

These expressions are the same a8 those used to define_ hl and hz in
Theorem 1. It follows s therefore, that XK = 0, and the solutions re-

sulting from ¢ =al + b duplicate previous solutions. However, it is”

readily verified that solutions different from those glven in Theorem 1

result when ¢ = 1n (au + b)2., For n £0,XK#0, the corresponding
surfaces are nondevelopsble. These observations lead to.the following
theorenm. -
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Theorem 5. - The forms for hl’ hz, and ﬁz given in Theorem 4
which are assocleted with nondevelopeble surfaces are characterized by
@ = In(afl + b)2. The expressions for hy, hy, and T, can be written

hl - (cOIlBt- )Pr(xl) [&'P(xl) + 'b'Q.(xz) + cl]n

b,
Ty

(const. )q' (x5) [a'p(xl) +bla(x;) + c‘]n ndo0

(const.)}a'np(x;) + b'Q(xz)]m

Geometric considerations. - The specific expressions for hy, h,,
and ﬁz given in Theorem 5 meke possible a rather general anelysis of
the geometric aspects of the problem. In order to simplify the ansalysis,
P(x;1), a(x;), and the constants that appear in the expression for hy
and h, are chosen in such a way that

I

hy (axq + bxz)n

hz (E.Xl + 'bxz)n

Given the corresponding differentisl quedretic form,

8

(d.e:)2 = (ea.m‘L + 'bxz)zn [(dx_l_)z + (dxz)z] (48)

the existence of an associated class of surfaces is assured (ref. 21,
Pe 122). This class of surfaces wlll now be studied more closely. Con-
sider an orthogonal transformation of coordinates defined by

x=X*sinor,-X;coscn
1 1
(¢ & constant)

* *
choscc+X sin «

X2 2

Under this transformation, equation (46) becomes

2n
(ds)2 = [(a sin o + b cos a.)Xi + (b sin @ - a cos a,)X"z"] [(axj*_)z + (d.X%")z]
If o 1is now chosen such that

g silna +bcos a=0

there results

(85)? = o2 [(a)? + (ax})?] (47)



where . - e LI
c= Db sin a - 8 cos

Finelly, by choosing - -
e ¥+l
Xp = g1 (%2) (n# -1)

n
Xl = c( c ) ?(l - —

equation (47) can be written
o L -
(as)? = x5%(ax,)? + (ax,)? (48)
where e -

n ) : B -
n+ 1 . --

It follows from the sbove equation that m_ cannot be equal to 1.

me=

If n= -1, . . S
2 - . .
X, = c'Xi L N

The differential quadratic form (47) becomes

_ *
X ¢! 1In Xz_

(as)? = e'zxz/c'(dxl)z + (ax,)? | (49)

Now consider surfaces 1in space in which it is possible to embed
coordinate systems having differential forms corresponding to eguations
(48) and (49). First note that h; in equations (48) end (49) is a
function of X, alone. Now for a (ds)? of the type

2 2 2
(as)? = £3(Xp) (a%1)? + (axp)?
a specific class of surfaces can be assoclated (see ref. 21, p. 206).
These surfeces are surfaces of revolution given by (Yi Cartesian
coordinates) .
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= af(X,)cos }—:-?—'-

iy
1

X
Y, = af(X,)sin -ﬁ-

Y5 =fa/1 - (2)2(£")2 aX, + const.

In relation to the present problem this report will first investigate
surfaces for which £(X;) = XJ. Choosing X; = O and eliminating the
remaining parsmeter show that the surface of revolution is generated by

rotating the curve:
Zgl-m§
v m
Y e I
(em)

about the TYz-axis. This is also the class of surfaces investigated by
Geis in reference 7.

The nature of the curves can be guelitatively determined from an
examination of the derivetive

2 l-m)
—— T —————— — - l
d.Yl (ma)z 8

For 0 <m <1 the curve should have the following general shape:
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For m>1 or m<O0, the curve has

Y
/

3
3

the genersal shape

* a
e
(ma)m'l
o o Yl
1

NACA TM 1437

Finally, investigaste the surface of revolution determined by

_ Y
ny = e Xp/c

(see eq. (49)). The paresmetric equations can be written

—Xz/(!' Xl
cog8 -

a

-Xz/c' xl
sin —

&

-2Xz/c!
(e')”

For this particular case, it is known (ref. 21, p. 207) that the surface
of revolution is obtained from revolving the tractrix

the Y3-axis:

shown below a'bout )

(o N ]
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As indicated in reference 7, the characteristics of the surface are such
that the boundary-layer equations will probsebly apply over limited regions.
It is, of course, necessary to keep in mind that, in any flow problem
over curved surfaces, the boundary-layer equations are valid only in re-
glons where the minimm velue of the principal rasdiil of curvature does
not exceed the boundary-layer thickness.

While a speclal class of surfaces has been exhibited with coordinate
systems satisfylng the expressione for (ds)2 in equations (48) and (49),
it is well to consider what other surfaces might be admissible. The
admissible surfaces are surfaces that are "appliceble" to the surfaces
of revolution illustrated previously (ref. 21, Pp. 172-174). This means
the class of surfaces obtained from the surfaces of revolution by bending,
without stretching, compression, or tearing.

The streamlines of the mainstream flows will be lines that make con-
stant engles with the coordinate lines. In systems where one set of
coordinate lines corresponds to meridien curves on a surface of revolu-
tion, the streamlines are the loxcdromes of the surface.

Reduction of 0.D.E. Conditions When One Coordinate
Curvature Is Identically Zero

Solutions of the 6.d.e. conditions are now to be obtained under the
assumptions that one of the coordinate curvatures vanishes identically

Initially, consider the case of kj = O. (The case for ky = O then

can be readily determined from symmetry considerations.) Once agaln, a
set of o.d.e. condltions is obtained by assuming various possible forms
f or ﬁz .

The analysis 1s presented in appendix F and can be summarized in the
following theorem, which is stated for k; #0 and kp = O.

Theorem 6. - Let (x;,X;) be an orthogonal coordinate system for

which ky # O and ko = O. Further assume that U; = (const.)ﬁé. Then
necessary and sufficient conditions for equations (9) and (10) and (11)

and (12) to be reduced to ordinary differential equations under assump-
tion A are

(1) ﬁé = const., and
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hy = p(x,)q%(x,)

_ Q'CXZ) - -

bz = alx,) o

or

a g
i

px; ) (x,) |

1
q (xz) __
ho = n ~———- "where n # 0
2 q2(x5) #

(2)

Uy = (const.) efp(xl)dxl - B

_ p(xq)

a' (x,)

2
q (xz)
(3) Uy = (comst.)q®(x5), and h; and hy sre expressed by either
the first or second set of relations in condition (1)

(4) Ty = (const.)qn(xz)efp(xl)dxl, end h, and 'h, are expressed
as the set of relations in condition (2)

The function g2 is determined by

2 _ . =
g° = (const. )Uyk,
(Indices may be uniformally interchanged in the previous statements.)

Geometric conslderstions. - If the Gaussian curvat_ure is calculated
from the velues of hy and hy in condition (2) of Theorem 6, it can be

shown thet K = O. Consequently, cases (2) asnd (4) are completely
covered by previous analyses. -

SLEV
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The first set of relations for hy &and h, in condition (1) of
Theorem 6 can be written

1l

© nx,
hl e

h2=l

by choosing pl(xl) =1, ‘11("2) = &2,

The guedratic differential form then becomes

(a8)? = &2 (ax )2 + (ax,)?

This form is identical to equation (49) with c' = - =

The second set of relations for h; and hy in condition (1) of
Theorem 6 can be written

-n

hy = %5
by choosing
ql(xz) = -lez
— (_n\"D
For this case,
2 -2n 2 2
(d.S) = (XZ) (d-xl) + (d-xz)

This result can be compared with equation (48) with m = -n. However, in
this equation it is possible to choose n = -1, which leads to a devel-
opeble surface. (The velue m = 1 was not allowed in eq. (49).) Refer-

ring to equation (50) shows that, for m=1 and 1z 1, diz = -1
8.2 Xm &2

and the corresponding surface of revolution is a cone ('J'E > l) (see fol-
a

lowing sketch) or & cireculer cylinder (—lg = 1).
8.
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//’////’/’ Meridian curve for

m=21, é; =1

Ag would be expected, the expressions for U = ciﬁz determined fram
Theorem 6 can readily be shown to be ldentical to_expressions for Uz
determined from Theorem 5 after the form for (ds)Z im Theorem 5 is
transformed into the form determined by Theorem 6.

This section concludes by observing that further analysis consider-
ing k= O and kp = O is not necessary. In this instance K = 0,

and this case has been completely analyzed.

CENERAL: SUMMARY OF REQUIREMENTS FOR THE EXISTENCE OF

SIMITARITY SOLUTIONS

The various results obtalned for flows over developable surfaces
and for flows over nondevelopable surfaces characterized by
Uy = (const.)ﬁé can be summarized as followWs. For surfaces of noncon-
stant Gausslan curvsture, constant curvature, and zero curvature, a
suitaeble choice of Gaussian coordinates can be made in each case that
reduces the corresponding forms of hy, hy, Uy, ﬁz, and g2 to a basic
form given later. Assoclated with each basic form there can be .chosen a
characteristic surface of revolution. The meridian curves on the surface
and their orthogonal trajectories constitute the coordinate lines of the
basic system. All other permissible coordinate systems are obtained from
the basic system by a scale transformation and an orthogonsl transforme-
tion. All permissible flow surfaces for a given value of K are the
class of surfsasces appllicable to the charscteristic surface of revolution.

The basic forms for hy, h,, Uy, Uy, g2, and the equation for the
associated surface of revolution are as follows: )

(1) K # constent

hl=x121 n7lo,l

. SL6¥
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Uy = (const.)Up = x5
U
g = (const.) =+

Surface of revolution: obtained by revolving the curve

Zgl-n!
1 (Yl) "
Y, = —_ © - 1 Y., + const.
3 a2n2 \& | 1

gbout the Ys-axis.

(2) X = constant (nonzero)
hy = enxz
hy = 1

Uy = (const. )_ﬁz - e B
= (const. )Uy

Surface of revolution: obtalined by revolving the tractrix

Yz = % fA,(nYl)'z - 14dY¥; + comst.

about the Yz-axis.
(3 K= 0

() x5 +

#

o

2
hy = %
1

_ mx.
U (const. )T, = xI.ale 1

o
!

[AV]
"

S
(const. ) 5

Surface of revolution: &a cone



-1
L Uy = a.enxlx;l

nx
1 }
U, = be x‘;‘

g? = (const. )0y

2. U = a.xﬁx’;’l )
U, = bx?__lx%l _
g? = (const.) g% _

3. U) = axy _
Up = DXy ]
g? = (const. ) ;i |

1

4 Uy = et ] -

U, = bemxl _

g“ = (const.)U;

Surface of revolution: ecircular cylinder

METHOD AND RESULTS OF REFERENCE 16 _

The assumption of proportionality among coefficients in equations (9)
and (10) and (11) and (12) (assumption A) was used in preceding sections
as & sufficient condition for reducing these equations to ordinary 4if-
ferential equations. Geis (ref. 16) has shown in the meantime that such
proportionality 1s also a necessary condition for the complete boundary
velue problem. He actuselly shows that the previously mentioned coeffi-
cients divided by g2 are constant. The proof is based on & detailed
study of these coefficients when the basic equations are subject to the
boundary conditions on F(n) and G(n). This proof is the content of
section 4 of Gels' paper.

40 = NACA ™™ 1437 . .
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The search after permissible forms of the funetions h,;, hy, and

Uy, UZ proceeds in the present report along lines that are quite differ-

ent from what is done in the corresponding section 5 of reference 16.
Gels discusses a subcase of the case K = O, namely, kq = ks = 0. The
rest of his discussion uses the alternate assumption that

a(h

)
_El_ - Eacz (hoUy) =

which 1s satisfied if the maln flow is irrotational. This hypothesis
stands in contraedistinction to the essumptions of developable surfaces
or U; = (const.)U, made here. It is remarkeble that all but two of
the solutions obtained by Geis for Uy, Up, hy, hy, and g° are also

found in the present analysis. In two exceptional cases Gels gilves
implicit solutions that were not obtained here. The first of these
solutions is charscterized by

vhere @ = @(x;) is & solution different from (x, + const.) of

¢(p." + (cpt - 1)2 =

The second of these solutions is characterized by

Uy = (%) T, = AU + B
gl = -’

1
h1_= 1 hZ = ﬁ;

wvhere @ is a nonconstant solution of

(92 + B)o" + (%_ 95 - 0P + 2 Bp - Bc)q,xz -0

Geis notices, however, that his explicit solutions are also valid when
his condition of irrotationality ls not satisfied.

It might finally be added that certain other solutions given im-

plicitly in reference 16 are found in explicit form in the present psaper.
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It might be mentioned again that the .emphasis here has been to
examine the geometric aspects of the problem, that is, to determine the
nature of coordinate systems, main-flow streamlines, and flow surfaces
from the solutions found for Uy, Us, hy, and hp. This would appear to
be a necessary requirement for fully evaluating the physical significance
of the results.

UNCOUFPLING OF EQUATIONS

The principal advantage of employing similerity techniques in an
analysis of boundary-layer flows 1s the reduction of the partial differ-
ential equations for the flow to ordinary differentisl equations. How-
ever, the solution of the system of ordinsry differentlsl equetions is
generally difficult to obtain. Inspectlon of equations (9) and (10) or
equations (11) and (12) discloses that the equations are of order three
and nonlinear. Solutlion of systems in the past has usually required
application of numerical techniques. If a wide range of flows is to be
studied, this can be leborious and time-consuming. An sdditional diffi-
culty that arises is that in a large number Qf cases the equations are
coupled, which mesns that the functions F(n) and G(n) appear in both
equations. If the equations are uncoupled, and one equation is expressi-
ble in terms of & single fumetion, that equation can be solved quite
readily, end the values obtalned can be used in the solution of the re-
maining equation. It is of interest to know, therefore, for what classes
of flow problems thls is possible.

With this concept in mind the present section will determine the re-
strictions on hj, hs, U;, and Uy that lead to the uncoupling of equa-

tions (9) and (10) and (11) and (12).

Uncoupled equations in the trivial sense of one equation identically
vanishing will not be considered. (This could come ebout in certain -
classes of flow problems in which U;= O or Uy, = O and the mein-flow

streamlines have zero geodesic curvature.)

The requirement for uncoupling is simply that the coefficients of
terms involving both F and G should vanish in either equation (9) or
(10) (or egs. (11) and (12)). Without loss of generality the requirement
for uncoupling will be imposed on equation (9) (results hold aslso for
(11)). Exemination of equations (9) and (11) discloses that the follow-
ing equations must be satisfied:

T[-Jz d 1n Uy '_
EE —&—2—— + ngl = 0 (51)

QfAH
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e " g e + Tk = O (52)
U3, _
ek o) (53)

Equation (53) gives st once the following lemma.

Temma 5

The ordinery differentisl equations (9) and (10) (or (11) and (12))
are uncoupled only if one of the coordinste curvetures vanishes identi-
cally, that is, only if one set of coordinete lines is a system of
geodesics on the flow surface.

Attention is first restricted to flows over developable surfaces.

First, note from equation (51) that, if O 1n U;/dx, = 0, then k; = O

and, hence, both sets of coordineste lines are geodesics. If it is now
essumed that O 1n Uy/dxp, # O and klé 0, then (see appendix D)

Uy = clﬁz
Hence, from o.d.e. conditions (B and (@ in set (14),
gz = czUlkl
) alngz:Banl_l_alnk
M 9% Oz

But from equations (51), (52), and Uy = ¢ U,

é_{-%ﬁ.z_go
*2
.B:LnUl_ alnkl

g =

Exemination of equation (17) shows that for K= O
1 9 1n kq
by~ O%p

Substituting this result in equation (54) gives

1

(54)

=-kl

1 aanl

by 5Xz =k
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[

If this expression is in turn substituted in equation (51),

2kl = O L ; i

which contradicts the assumption that ky é O. The following lemma now
regults.

Lemms, 6

For flow over developable surfaces, eiuatiohsr(s) and (10) are un-
coupled only if k; = kz- 0, that is, both sets of coordinate lines are
geodesies. -

If k;j= ky= 0, it follows at once from equatioﬁ (51) that

'g2 for this case (see p. 40) shows that in every instance g2 = (const. )

or g2 = (comst.)U;. Hence, with Uy = Uj(x;) equatian (52) becomes (now
it is required that T, = Usp)

- ° s

Therefore, the permissible flows can be reduced to the following two
cases (see again p. 40):

Uy = aenxl -
U, = be .
or
Uy = axy _
Up =D ? - B
N Now, consider flows over nondevelopable surfaces with X # coﬁ;t.‘
8

= 0, the permissible solutions for hj, hp, g ; end Uy can be
taken as those given in case (1) (p. 38):

111:_‘)(%l ’ _; _
ho = 1 = -
U, = (const.)T, = x5 —

gt = (const. )Uy /x,

NACA ™ 1437

Furthermore, examination of possible forms for U,, U, and'

' GLEV

1
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Now, for Uy = (const.)ﬁz it was previously shown that

é_%EEEE =0

However, g2 = (const.)k%'l, and, therefore, it is necessary thaet m = 1.

Substituting the permissible forms for U,, h,, and h, 1into equation
(51) gives

.l_.+£=0
2 %
Hence, n = -1.

While the previous.results appesr to lead to a valid case of un-
coupled equations, substitution of the actual forms into equation (9)
shows that this is not so. As may be verified, substitution leads to
the equation

F" (n) =0

The function F(7n) cannot, therefore, fulfill the imposed boundary con-
ditions, and this case must be ruled out.

Finally, consider K = constant (nonzero). The solutions for h,,
ho, g2, and U; of case (2) (p. 39) then apply.

As
g2 = (const. JUy

and, as once again

there results
10 Uy
0%y

This result substituted in equation (51) ylelds ky = 0. This, however,
would require (with kp = O) that the surface be developeble and would
therefore contradict the hypothesis.

0

The results are summarized in the following theorem.
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Theorem 7

The ordinery differential equations (9) and (10) are uncoupled if
and only if o - —

(1) Flow surface is developable, and both sets of coordinate lines
are geodesics. =

(2) Uy, Uy, and g2 have one of the two following forms (except for

change in indices):
nx

U=ael - -

_—
"~ (8) { Uy = Dbe 1

®

N
n
Q
a3
|

c
&

(B) U, = bx>

Equations (9) end (10) have, respectively, the following forms if (A) is
employed: -

|
o

| n[(F')2 - EFZ;—' - ] - eFM = (és)

n(F'G' - 1) - %-E - cG™ = 0 (56)

If the forms of (B) are employed, there result, respectively, for equa-
tions (9) and (10)

= . e

nBFWZ- q —(n-kl)Egl-cFm iO (éﬂ.
| n(F'G¢' - 1) - (n + 1) Q%E - cG" =0 (58)

For both sets of equations the boundary conditions are

F(0)} = F'(0) = G(0) =-G' (oY = o
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lim F'(q) =1 lim G'(n) = 1

M+ =+

It is not necessary to comsider equations (11) and (12) as Up = O
leads to straight-line flows in the present case.

PRACTICAL, APPLICATIONS OF THEORY

From a practical standpoint, similerity solutions might be applied
to the study of boundary-layer flows over such aerodynamic configurations
as wings, missiles, fuselage forms, or channel flows. From the stand-
point of anelyzing flows over wings or in channels, the only type of
analysls that seems promising is the one employing rectangular coordinstes
(i.e., coordinate lines are geodesics). The principal reason is that in
such configurations the boundery leyer is generally initiated along a
straight line on the surface (e.g., leading edge). This physical case
can only be approximasted when an analysis allows & boundary layer of zero
thickness to exist along such a line. This obviously can only come gbout
in a rectangular coordinate system esnalysis. On the other hend, polar
end spiral coordinste systems may have particular application to flow over
such configurations as missiles where the boundary layer develops from a
point (e.g., nose of the missile), '

In any of these cases, however, 1t should be kept in mind that a
similarity anelysis will generaelly predict only quslitetive behavior of
the flow. The restrictions imposed on the main-flow velocity components
will, in general, be too severe to conform to a specified flow configura-
tion, end, at best, an approximation to this flow can be constructed.
Nevertheless, experimental verification of certain aspects of flow behav-
ior predicted by theory has been very encouraging in at least one in-
stance., The investigatlon presented in reference 1 shows that limiting-
flow deflection on a channel surface can be accurately prediected.

The calculation of boundary-layer velocity profiles from a similarity
analysis can slso serve as a guide in setting up spproximate analysis of
boundary-layer flows using so-called momentum-integral methods. This
method generally requlires an a priori specification of the wveloeity pro-
file shapes, which are then spproximsted by en analytic expression. Lack
of information on the forms of three-dimensional veloecity profiles has
seriously hampered spplication of this technique,

CONCLUDING REMARKS

The following conclusions can be drawn from the anelysis presented:
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1. The requirements for a similarity analysis of the boundary-layer
equations for flow over developaeble surfaces can be completely determined
if the equations are referred to orthogonal coordinates. Two basic sets
of solutions are sufficient for analyzing all permissible flows.

2, For malnstream flows over nondevelopable surfaces with Uj = ciﬁz,
two basic sets of solubtions ere sufficient for all permissible flows. One

set applies to surfaces with K # const., while the other applies to
X = nonzero const. All permissible flow surfaces are surfaces geometri-
cally appliceble to two basic classes of surfaces of revolution.

3. Uncoupled systems of ordinary differential equations resulting
from a similarity analysis occur only when coordinate lines are geodesics
(rectangular system in the plane).

In conclusion, the following problems pertaining to the analysis of
similarity solutions seem worthwhile for continued investigation:

l. A general analysis for all possible types of similerity solutions
has not yet been evolved in the sense that investigations to date (ref:
16 and the present paper) have employed certain assumptions to reduce the
complexity of the problem. ' ' . ' .y

2. Solutions of the ordinary differentisl equations arising in a
similerity analysis are few in number. Tittle work has been done on
coupled equations. It would be of interest to study variations in solu-
tlons for a range of parameter velues elther through a progrem oo high-
speed computing equipment or by developing suitable gpproximstion
techniques.

3. Extensions of the present theory for incompressible laminar-
boundary-layer flow to compressible laminar-boundary-layer flow would
be of interest. BSome investigations of thils kind have been carried out
(e.g., ref. 22).

Lewis Flight Propulsion I.eboratory
National Advisory Committee for Aeronautics -
Cleveland, Ohio, June 10, 1958

GLEY

A
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8,84
B,By

C,Ci

d.’di

F,F(n)
£,54
@,G(n)

g 3
g,8(x7,%5)
by ,hg

* L%

hy,ho

kyskp

APPENDIX A

SYMBOLS
constants
constants
constants
constants
constants
constants
constants
constant
functions of 17
arbitrary functions
functions of 10
metric tensor for three-dimensional coordinate system
arbitrary function occurring as a factor of 1

square roote of metric-tensor components in orthogonal
coordinate system

specific forms for hy and hy defined by ea. (29)
Gaussian curvature of surface

geodesic curvature of coordinate lines of x; and Xxj,
respectively

constant

constant



arbitrary

functions

NACA T™ 1437 .

axrbitrary functions
constant -

arc length

constant

5

mainstream veloclty components'in X1~ and xz-directions
function of xj,Xs, eq. (6)

cammon designation for either U, or fﬁ; -

specilal designation for function of x; and xp occurring_

in eq. (42)

boundary-layer velocity components in xj-direction

transformed boundsry-layer veloclity component normal to
surface S =

coordinates defined by eq. (é?)
curvilinear coordinates
coordinates ~ -
curvilinéar coordinastes -
Cartesian coordinsates

¥ /v

physical coordinate normal to flow surface

similarity parameter ~
coordinates defined by eq. (C5)
coefricient of kinematic viscosity

function of Xj,Xp, eq. (C1)

arbitrery function, eg. (42)

SL67 -

P
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Subscripts:
i,d,k;1,m,r,s denote index numbers
Superscripts:

Primes denote differentiation

51
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sion

APPENDIX B B

ANALYSIS: = 0; k; #0, ky #0. FROOF OF THECREM 1

The solutions for the varilous unknowns in set (14) on page 10 are
obtained here for the case K= 0; k; # 0, k, # O.

Permissible Forms for ki, kp, by, and by

Before kj, ko, hy, and hy can be determined, certain other

general results are needed. In this regard, it will first be shown that,
under the assumption of neither k; nor ks, being identically zero, it

must follow that k) and kp each possess nonvanishing first derivgtives i}
with respect to both x4 and. Xo . _ -

Assume that a derivative of either k; or kz “with respect to one

coordinate is identically equal to zero, while the derivative with re-
spect to the other coordinaste is not. . _

Ak ok -

Specifically, sssume —= =0 and —=g 0. It will first be shown
3y Bx oxy
that the assumption 5—— -;‘ o} leads to the equation
X2 _ \ . -
dl 0 1ln k3 -
kq = — - Bl
175, TS (1)
From lemmas 1 snd 2 and equation (19),
2
2 _ Cl —
2
Hence, E
3Ing? OWmU; dlnlky ' )
== + = (82)

- Oxg ox, - - 9xp

Now, both J 1n gz/sz and 3 1n U,/dx; cennot be zero, for then
d1n k ) '

1 .
__BEE—_ = 0, which would violate the initiel. assuwmption. However, if

d 1n Tp

d In g? _
__EEES_ 0 and '—TS—__— # 0, from equation (BZ), iﬁ.e. condition er |

SL8%
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® end (@), and lemma 1 there results

B In kl B In Ez
= - = byhoks
axz &2

It therefore follows that equation (BL) holds.
If 5 # 0 and = = 0, then from equation (B2), o.d.e.
condition for @ and @ s and lemmas 1 and 2,

d1lnky 3 1p g2
= g~ _
Sk, T oxg - refefi

and, again, equation (Bl) holds.

Finally, if both o In gz/axz end 3 1n TU,/0x, are not identically

zero, equation (B2), the o.d.e. conditions for &), ), and (), and
lemmas 1 and 2 yield

and equation (Bl) holds.

ok
Now, from equation (Bl) and the assumption that —= =0,
x)
ho 3% In ky
ky gx—l = (const) W =0

dh.
However, ky 5;32-_ = ]:,llhzklkz = 0 contradicts the basic assumption that

nelither ky mnor kp vanish identicslly. Similarly, it can be shown
akl Bkl .
that the case = £0 and =, " 0 is incompatible with that

assumption.

Similar statements hold for k. Hence, the following lemma can
now be~stated.

Lemms, 3. - If both k; and kp are different from zero and neither
reduces to a constant, then both coordinate curvatures k; end ks must
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possess nonvanishing first partial derivatives with respect to both x;
and Xs5. T

By employing a procedure similar to the one uséd in establishing
equation (Bl), it 1s also possible to show that -

k =iz.alnkl ] (B3)
17 hy Tox . o
or, by using lemms 2, '
d> o 1n k ' -
K = i~ - (B4)
Ca2t Xy .

Hence, from equation (B4) and the definition of ks,

do 0 In k d In ho' g
2 2 2
c, Bxl = Bxl (= hykp)

€2

Therefore,

3 -co/d
3 (kzhzcz/ 2) =0

"k = hgz/dzfl(xz) '; (B5)

where fi(xz) is arbitrary.

From the definition of ky, equation (Bl), and lemma 2;

3 1n hy d In ky d I ky
Bkl f o T U TG T L TG

LD ~1/ap _
o &"2- In kZh]_' e =.0

1/d 2 -
oo lp = h TEa(x;) _ (B6)

where fé(xi) is arbitrary. From equations (B5) and (B6) is obtained

dz/ez
_ pde/dgen £alxy)
270 T (%5)

h (B7)

Now, relations between the various constants sppearing in equation (B7)
must be found.

-,— == =
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First of all, by differentiating hoky/d; with respect to x;
according to eguation (Bl),

2
1 oh. dk 0° In k
st ) = T (B8)
1 X1 X1 ) o9xp
Also, from equation (B3),
hak 4 o 1ln k1
151 2 axl
and differentiation of this expression with respect to xp gilves
L [ o 3, | 9% 1n x;
ap \L 3 by Axp ) T Ox; Oxp (89)
From lemma 2 and the definition of k; and k,, finally,
oh, _ oh, (
g;é' = Co E-JEJ—_ B10)

In equation (B9) substitute for Jhy/dx; and Jk;/dxp; according
to equations (B1O) and (Bl):

Sh k5h 3% 1nx
1 2 182 1
— |k-c + = hy | = E (B1i1)
ds (l a le d; l) 52{1 5x2

Similarly, equation (B8) becomes, by equation (B3),

2
1 (k dp 2 hlhz) ¥
d; \1ox; "L 4dp Ox; ox,

(B12)

Finally, equations (Bll) and (B12) yield

Hence,

T 4 =1 (B13)
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It is now possible to evaluate d; by noting that the derivatives

in equation (17) mey be eliminated by the use of equations (Bl) and
(B4): -

2 2 2 %2 L _
kl+k2+k2 - = 0

which, by equation (B3), becomes

2 2 1\ _
(kl"'k‘a)(l""dq>"o
whence 4 = -1 as ky and ko are assuhéd nonvani?hing.
Tt therefore follows from equation (B1l3) that

c2

'&'2‘=-l

From the previous results, equations (B5) and (B6), and lemma 2 there
results lemma 4.

Lemme 4. - Under the assumption of nonvanishing coordinate curvature

tures, k; and k, must be expressible as - -
kp = fz(xl)/hl

ky = cpf(%p)/p

Expressions for hy and hp can now be obtained as follows. Frém

the definition of k; and kp,

3 In hz : - ’
31n by - - -
—-é—x—z—— = czfl(xl) ‘ (BlS)

Hence, hy and hp must be expressible as a product of a function of “
x; and a function of x5:

By = qy (3, )az (xz) ) (B16)

ho = Pl(xl)Pz(xz) ) (317;-
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Substituting expressions (Bl6) and (B1l7) into equation (B1O) gives
ay (x7)as(x5) = CzPi(xl)Pz(xz)

Neither qé(xz) nor pi(xl) can be identically zero under the assumption

that neither of the coordinate curvatures vanishes identically. Therefore,

q'l(xl) CSPi(xl)

po(x,) = c ab(x,)

Hence, hy and h, can also be written in the form

hy = Cspi(xl)qz(xz) (B18)
hy = ey (%7 )ad(xz) (BL9)
From the definition of k; and ky and equations (B18) and (B19),
. 3ho
1 2 1
= = B20
k2 hihy 3%  czpi(xq)an(xs) (820)
' oh.

k) = e L (821)

T hyhp Oxp Py (xq)ap(xy)

Permissible Forms For U, U,, and g2

It is noted once more that before a unique set of o.d.e. conditions
can be prescribed for the determination of U; and Uy, certain assump-

tions regarding the vanishing or nonvenishing of various terms in set
(14) must be made. As the terms of interest in set (14) involve the
first derivatives of U; and Up, the necessary agsumptions can be im-
posed in terms of the vanishing or nonvanishing of these derivatives.
By recalling from lemms 1 that Uy = clﬁé, the following four cases
cover all possibilities:

dU, 3T,
(1) Case A: 35 T %Ly # 0
AU 30
1 2
and axz = cl BXZ é 0
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aUl a 2 . __— - _
(2) Case B: E =0 5—;{—1-50 X = =
and gg =cy &-2* # 0
Uy Uy
(3) Case C: B-J-c-i= cl&—é—,éo
dUy o, -

and &EEO &E__O

4) Case D: U, and U, are nonzero constants all derivatives
1 2
venish).

First consider case A:

From the o.d.e. condition for @ and @ and .lemma 1,

ibUl:cU'k
hlsxl 57172

0 ln U
oo —'-E—X-]-—-' = cskzhl

Employing the expressions for hl and hy, given in equations (-Bls') and

(B20), respectively, gives -
dnU;  din py(x1)
3y 5 &

s 1n Uy = 1n [p1(x)] 5 f=z(x5) (B22)

Now, from the o.d.e. condition for @ and @ and lemme 1,

31Uy
v, = cohoky

As above, 1n U; can be evaluated to obtaln

1n Uy = 1nfap(ea]] © + £4(xp) (B25)

i
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It then follows fram equations (B22) and (B23) that U; and Up must
be expressible as

n m =
Ul = c7pl(xl)q2 (Xz) = Cle (B24:)
where c7, n, and m are nonzero constants.

The form of the function gz is obtained from the o.d.e. condition
for @ and. @ and lemmsa 1:

Hence,
& = ogph M (x ) Hx,) (B25)

If the expressions for ky, ks, by, hy, Uy, Uy, and g2 are substituted

into remaining o.d.e. conditions, it will be seen that these conditions
are satisfied. Hence, for this case, necessary and sufficient conditions
for obtaining ordinasry differential equations from the original partial
differential equations under assumption A have heen found.

The analysis for cases B, C, and D follows the method outlined
Previously. The results are as follows:

Case B: U; = (constant) qg(xz) = c£52
m-1
2 ( ) Qs (xz)
= (constant
g cons —EITEZT—
Case C: U; = (constant) pﬁ(xl) = ciﬁz
n~1
2 _ by (xl)
g“ = (constant) W
Case D: U; = (constant) = ciﬁz
gz _ __Constant

= B () a4, (%)

All results are summarized in Theorem 1 in the text.



60 ’ h NACA ™ 1437

AFPPENDIX C

NATURE OF COCRDINATE SYSTEM CORRESPONDING TO K = 05 ky # 0, kp # O

The following amalysis will deal with the determination of the ex-

plicit form of tremsformation (30).

At the outset, the fbllowin§ observations are ﬁgde Suppose there
ere two coordinate systems (yl,y%) and (xl x2) functionslly related by

vt = yi(xd,x -

-3

If hij and 8137 respectlvely, denote the metric tensors of the system

(v.) and the system (x then . ~ -
i i it .

g, = 2528
13~ ayi By rs

menipulations (ref. 20, p. 83), it is possible to show that

_aiﬂ_=3zfa_3f‘i_ ;mféﬁéz_
i3 rs

axt dxI dx?t oxil dxd

A m
where J % and 3 } denote Christoffel symbols bssed on €rg and
x1J y rs

hij’ respectively. (See brief review at end of this ippendix ) If the

system (xl,xz) is restricted to be a Cartesian system, all Chrlstoffel
symbols vanish and the above expression becomes -

d2Zym { zaym
dxt d3xI dxt

This system is then & system of second-order partial differential equa-

tlions for the transformation yi = yi(x%,x2). By revérting now to the
notation employed in equation (30), the system can be written as the
following set of first-order partial differential equations:

-
%%5=§i i=l,2
> (c1)
agi {2}
= E 1 =121,2
Ky lyy) )
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where Y stands for either Yl or Yz. Evaluation of the Christoffel

symbols gives the following results:

"

1] 13 (n))?
3 (”5 23]

]
oot
g1
o
]
5
[AV]

Z}=_ 1 B(h:-‘)_")z__.a_z_}_{_z_
2(n)2 oKXz " p2 X2

{zg 19 ()%
NI T )

{22 19 In (n%)2

22) T2 oK, =0©
31 _o_i dERE a2k
22 2(nf)2 X T a2 x2

The system of equations (Cl) can therefore be written as

= El; 525

R
o

3
al
no
]
1
ol
ol
Jre
~
—

(c2)
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It is possible to give particular solutions for Y ﬁnd Yo whiéh
satisfy these equations and also satisfy the orthogonality requirement-

dy, d;  dYp Y, .

3%, X, T 3% ax, = © - S

The functions -

Y, = cX;Xp cos (d n ¥ - % 1n xz)

1 (cs)
YZ = CXlXZ sin{d 1n Xl - 'a In Xz
where -
2.2 2 -
02 = ——-—-—-—a b d.z = a'_..
a? 4 b2 b2

represent a particular solution of the system (C2). The most general
solution of the system can be therefore written as

where the ay are the elements of an orthogonal matrix and the Ty

are constants. Equation (04) merely represents a rotation and transla-

tion of the coordinate system defined by (¥y,Yp). -
In order to better ascertain the nature of the (Xl,Xz) coordinate

system, let -

P CXlXZ
1n X, (cs)

0 d

d in X -

be a transformetion of the (Xl,Xz) system to a polar coordinate system;
that is, in terms of p and 6, : B

p cos &

¥y

¥,

p sin 6

Now consider the coordinate line X; = Xg = constant. The equation of
this coordinate line is glven parametrically by

cX1 X5

1
d1nX§ -3 1nX,

p

(ce)

e

SL6Y
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Equation (C6) can be expressed as

ef = (Xi)dxél/d (c7)

Hence, from equations (C6) and (C7),

o(x9)%%e~92 (ce)

o
or
p = (constée‘ed

Similarly, the equation of the coordinate line X5 = (const) = X% is
expressible as

o = c(x)/e8/d (co)
or

(const)ee/d

o
The curves defined by equations (C8) and (C9) constitute a system of
mutually orthogonal logarithmic spiraels relative to the (p,e) system if

the (p,e) system is interpreted as a system of polar coordinates in the
plane.

CHRISTOFFEL SYMBOLS

A brief review of the definition of Christoffel symbols is presented
here as an aid in followlng the analyses.

Consider a surface in which an orthogonal coordinate system (x1,x2)
is embedded. In such a system the square of the differential of arc
length is given by

2
(as)? = nf(axt)? + ng(ax?)? (c10)

when

hy = h]_(xl:xz)
hp = hz(xl:xz)
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The metric temsor g, (i = 1,2) associated with (Cl&) is defined by
2. s - 5
€11 = BY5 83 = B35 815 = 8z =
The tensor giJ may be defined by
1 - .
gl = = g22 = L, 512 g2l .0 —
g1l gz2 . = —
1
The Christoffel symbol { z (sometimes written F,jj}.s 15 then defined by
13 i
Nl k(3. des 3
_g ik Bk _ O81j
ij 2\ dxd oxt axk
Repeated indices imply summation. o .
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APPENDIX D

ANALYSIS: K= 0; kq = O,_kz # 0. PROOF OF THECREM 2

By following the same procedure that was used in establishing lemma
1, it can be shown that equation (24) becomes

ﬁz

a -1 2
kz l+2n+al&9'[—}'§ =0
1
As ko Z 0 and 8, and ag are nonzero constants, it follows that

Up = 10z (p1)

ags in the previous case.

From the definition of kj,
1 Oby

— 0
bihy Ox,

ky =
Hence,
by = f5(xq) (p2)

Recalling the definition of the Gaussian curvature of the surface K
and the assumption that K = 0 gives

1 13 (1 9 d (1 Oh
£ hlhz[5x1 (ﬁ 3X1> " 3xz (h_z 5%/ | = ° (p3)

From equations (D2) and (D3),

d (1 obg
3%y \By %) = ©

oh
1 a
".—"' =h2k2=f(x)
hl xl 6Vv4+2
ox
f.(x,)
6\ 2

2
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At this poilnt, it should be noted that kz cannot be constant i‘or, :Lf

it were, hy = _ﬁ and 3_ = 0, which wou.ld anly that kz 0. It
is also follows that -—— = O, for if 1t is assumed th&t — 1s zero,
Bxl Bxl
then, from equation (D4),
5 X1 hE 3%y
: dhp ; DU

Now, either fs(xz) =0 or 5 = O implies k, = 0, which violates
the hypothesis. : + ' -

Assume that vy 5,.4 O. Then, from conditions (¥) and and the

proportionality of Ul and Us,

&% = byUikp g (D5)
. dlng? _ 9 1n Ui 0 In ko
°r Exz axz axz

Hence, -

Olnky 31ng2 O1nTy
BX?_‘ = 1}{2 b . sz

(D6)

Under the assumption, the right side of equation (D6) cannot be zero.
Hence, the o.d.e. conditions arising from the combinatlons @ and

and and (§) along with equation (D1) yield
d In ko : _ F
3%, -~ Psleke _ (D7) -
Similarly, it can be shown that
O 1n ko ' ‘
3%~ Petike (D8)

Differentiating equation (D7) with respect %o x; and employing equa-
tion (D4) yield -

hoks = O (D9)

il

LU hcew. |

¥
.

wnd g
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Now, differentiating equation (D8) with respect to Xp and recalling
oh
that Eﬁgls 0 (as k; has been assumed zero) give (with eq. (D9))
2

3% 1n kg o k2 .
x5 Oxy = P6Hl x5
dk.
Thus, 5;2 # 0 is incompatible witk ks # O, k; = O, and the only remain-

ing possibility is that ks 1is a nonconstant function of x; alone.
Defining kg = f7(x7) gives from equation (D4)
fe(xo)
612
= D10)
2= q(x) (

Finally, from the definition of ks,

o = 1 0 1ln ho

3 1n h,
ox £l
by = 1 ;(Xl) (p11)
2 £7(x%;)

From these results, Theorem 2 follows directly.

Because of the symmetrical nature of the equations, similar results
can be obtained if it is first assumed that kp =0 and ky # 0. In
this case,

kl = fBCXZ)
£9(x)
)
and
£4(x5)
hz = - "5

fg(xz)
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APPENDIX E

PROOF OF THECREM 4 _

The four cases presented on page 29 will now Pe enalyzed.

(1) Case A: TUp = const.
With constant, the following o.d.e. condition from @*
(set (45%) results:

d1n hi/k, 3 1In h;ll

BX:L = ) Bxl - B
2 — ———
31nn, "L,
3 =0
x1
Hence, - -
2 - j— = .
ns 1l = kopq (xp) pi(xp) # 0 (E1)

In a similar menner from (®)* and .* there result
2~

Substituting according to equations (43) and (44) into equation (El)
glves

2-c1; . -
[clofis(xz)ew(ﬁ)] = E%S ¢1e™%p, (x,)
2-c -
3= cll[ ] 11
c £lo(x,) C-=3)0
. f10 13\X2 _ ¢,e( 11 (E3)

e

Teking the partial derivative of equation (E3) with respect to xl and
assuming c,; # 3 give -

ar, (c11-3)97 a3
a‘ﬁ[‘“ ]&q”

I
=

5
=
g.i
| =]

[

(3]
-q

hy °12 < kpqy(x1) ar(x1) # 0 (Ez)
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Hence,
(011'3)¢
gfl——::——— = constant
du
-3 ~
o e(cll )Q = 8u + b
or
- 1/(eq1-3)
@ = In(au + b) 1 (E4)
A similar analysis using equations (E2), (42), snd (44) yields
- 1/(cq5-3)
¢ = In(su + b) 12 (Es)

for c¢yp # 3. From equations (E4) and (ES) it follows that
€11 = C12

If c¢3] = 3, there results from equation (E3) that o' = constant and
hence

®=2al+b (m6)

Next consider the case where one of the partial derivatives of Us

- does not vanish and determine the corresponding form for ¢.

9 1n Uy d In hy
TE BT =)

As ﬁé is assumed to be a function of X7 alone, from edquations
(E7) and (43)
po(xq) = ¢q5 - ey 50" () Fey

= e150' (B)£1,(x,) (E8)
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It follows from equation (E8) that ¢'(u) = constant. Hence,
Q= au + b

An expression for Up can be obtained from equations (E7) and (ES) by
solving : s :

d In Ug

_—EEZ__ = (const.)%iz(x;) |

There results

Up = (const.)ecléflz(xl) (E9)

It can be shown that all remaining o.d.e. conditions are satlsfied.

From symmetry considerations, this case is similar to case B, and
the following results can be stated directly:

P = aul + D

— T
Up = (const.)ec15 15(%2)

3T, o,
(4—) Case D: E‘#O;&Eﬁo

The o.d.e. condition for (D * and B gives

Hence, -
a5() ) (E10)

Similerly, from the o.d.e. condition for @* and. -*

= Ci7
Uz = by p3(x1) | (E11)

il
H
]

RIE

i
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Equations (E10) and (E1l) give

€16
ho B pz(xy)
37 %0 e

Substituting according to equations (42) and (43) into (El2) and

assuming cqg ¥ ¢y yield

t ¢ 7
[clofls(xl)] ps(x1) _ p (x)a,(x)  (E13)

Jleis-errlo _ |
[ ; ]ch LHEN
¢10f13(xz)
From equation (E13),
(c1g - c17)0 = In py(xy) + In g, (x5) (Ele)
aZ
Si = 0,
&o_ g
au

S Q=28u+b

Hence, from equation (E13),

pg(x;) = (const.)ecleflz(xl) [f_-;_z(xl)] 17 (E15)

f ) -
az(x;) = (con;:-rl:.)ecl8 ls(xz [fis(xz)] “16

where
cig = (e1g - C17)a

c1g = (e - cy7)acy
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Now consider the o.d.e. condition involving C)*'and C)*E

2
d 1n n§/TUpky d1n hy  _

axl - czo Exl

3 1n n27%20/T k. "
. 272 _
iR = =0 (E1s)

.9L6’§i

Substituting according to equation (E10) in (E16) gives

/k2=

2-(contc
3 1n 12 (caotcip)

0

oxy

0Inhy Olnky B
"[% - (ego + Cls)] % - oxg =0 - T

Therefore, from equations (43) and (44),
[2 - (cgo + cls)](P' +9'=0 I
As o' £ 0, it follows that
CZO + Cls =3 . . - -

From @* and * & similar relation between constants results » and no
new information is cbtained. Remaining o.d.e. conditions are readlly
shown to be satisfied.

Finally, consider the possibility cjg = cy7. Equation (E12) then

becomes
(hz)% ()
o) e )
and it follows at once that ; - -
p5(xy) = c21[fiz(x1)]—Cl6 i o —-_ :i
qglxz) = 021[5i5(xe)]_c16

At this point, the analysis for ¢ follows ﬁhe same p‘é’ctern as glven .
for case A, and the same equations for ¢ are determined. Theorem 4
follows at once. — ’

|

L ¥

“I
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APPENDIX F

ANALYSIS: Uy = c1Up; k1 # 0, kp = 0. PROOF OF THEOREM 6

Four possible cases are distinguished as in previous analyses.

Case A: Up = constant

Setting ﬁé = constant results in three o.d.e. conditions which

must be satisfied. These conditions can be obtained from the 1list in
set (45) and, after simplification, the terms that must be proportional
are the following:

d 1n
® 1 kZ
@ 2ky - —JT—?__

d1n k oh
x 1 2 1 -
® g—a;z—(now S, =0 =8 k1=-<5
®* x

The o.d.e. condition for (:)* and (:)* is
1 aln.kz
B Tag - G222

Hence, either

d In ky

oxr
Ayt
(cop - 2)by = 3= (cop # 2) (¥2)

* *
Also from (B) and (B) there is the possibility that either

Blnkz_o

T (¥3)

or
okt
h'z = 023 'a‘—xz-— (F4)
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If equations (F1) and (F3) hold, then ky = constant and
hs = Pﬁ(xl)Qitxz)

_ Pi(xl)

hy = 5,5 (Fs)

If 1t is assumed that equation (F4) is valid, there is obtained upon
differentigtion . : '

dhp d2k-1

S = ©23 Sk o (76)
x1 ® oxp Oxy : -

2 b Sl B
However, from equation (F1) or (F2) it can be shown-that 5, owy = 0.

But this would “imply that gi—i = hyhok, = O, which violates the hypo-
thesis. Hence, the one remsining possibllity is
o 1n ky S In ky
e YT 7O
Thefefore, . -
ko = pp(x7) - (F7)

From equation (F2) 1t then follows that

1 Pi(xl)
hy = 5— (F8)
e ‘22 PJZ_(_xl)
Now,
Blnhz_h 1 pilx)
T 152 = 7= opp B (%)
1/(2-c,,)
.. hz = [pl(xl)] 22 ql(xz) (Fg)

Y%

W
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Case B: FXZ. #0; El?. 0o

By an analysis similar to that given for case A, it can be shown
that hy, ho, ks, and U, must have the following forms:

Us = (const. )efql(:xz Jax,

p1(x1)

h = -
1 2
Pl(xl)

q_l(xz)
" py(x;)

Pl(xl)

g
|

kp

BUZ
dxp

The solutions for hy, hg, kz, and U, are Up = [pl(xl) +hconst.:]
with hy end h, defined by equation (F5) or Uz = (const.) El—(_ng
with kp, by, and h, defined by equations (r7), (¥8), and (¥9),

0

JU.
Case C: z #

respectively.

aUz aﬁz
Case D: 5}—(;#0 and B—XE#O

The solutions for h;, hy, ky, and Uy are

= (cons‘t.)pg_l(x_‘_)efql(XZ)dxz (n # 0)
Pi(xl)
LT G

g, (x;)

) p1(x7)
ky = Pl(xl,)

s
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As mentioned previously, the case where ko 2 0 glves similar re-

sults, with the roles of x; and X2 interchanged (from symmetry con-
siderations). Theorem 6 readlily follows. ) . .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1z.
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Figure 2. - System of spirael coordinates.



